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Parallel Sparse Cholesky Factorization with

Spectral Nested Dissection Ordering

Alex Pothen* Edward Rothberg t Horst Simon t Lie Wang §

Abstract

We show that the use of the spectral nested dissection (SND) ordering leads to an

efficient parallel sparse Cholesky factorization on an Intel Paragon muitiprocessor.

1 Introduction

A good ordering of the rows and columns of a sparse matrix can significantly reduce the

storage and execution time required for factoring a sparse matrix. Good ordering algorithms

currently exist for factoring sparse matrices on serial computers, but the design of ordering

algorithms for the fa£toring of sparse fnatrices in parallel is an important research issue.

In this paper we compare the performance of a spectral nested dissection (SND) algorithm,

an algorithm that orders sparse symmetric positive definite matrices for efficient parallel
factorization with the popular multiple-minimum-degree ordering (MMD) algorithm [4].

Nested dissection employs the divide and conquer paradigm to number symmetrically

the rows and columns of a symmetric matrix from n (the order of the matrix) to one.

At each step of a nested dissection ordering, a vertex separator (a set of vertices whose

removal separates the residual graph into two disconnected parts) in the adjacency graph

of the matrix is computed, and these vertices are numbered with the highest available

numbers. Then the vertices in the two parts are numbered recursively by the same strategy.

Several nested dissection ordering algorithms have been described in the literature following

George's discovery of the method. The major difference between these algorithms is in the

manner in which they compute a separator at each step. In earlier work we have described

an algebraic algorithm that computes separators from an eigenvector of a Laplacian matrix

associated with the given matrix [6]. Using this separator algorithm recursively, we have

also described an algorithm for computing a spectral nested dissection ordering [7].

The essential idea in the spectral separator algorithm is to associate a symmetric

Laplacian matrix Q = D - A with the given symmetric matrix M, where A is the adjacency
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matrix of M (aij ---- i if and only if m_j _ 0), and D is a diagonal matrix with dii equal

to the number of off diagonal nonzeros in the ith row. An eigenvector corresponding to

the smallest positive eigenvalue of Q is used to partition the vertex set into two parts,

by putting all vertices with components less than or equal to the kth lowest eigenvector

component into one subset, and the remaining n - k vertices into the second subset. The

set of edges joining the two parts is an edge separator in the graph. One choice of a

vertex separator then is the smaller of the two endpoint sets (belonging to the two parts)

of the edge separator. However, a maximum matching in the subgraph induced by the edge

separator can be used to compute a smallest possible vertex separator from the given edge

separator.
Justification for the spectral separator algorithm comes from earlier work (among

others) of Fiedler, Hoffman, Mohar, Boppana, Barnes (a short survey is given in [6]),
and from the recent work of Rendl and Wolkowicz [9].

Our earlier work [7] has shown that the SND ordering outperforms currently available

orderings such as the Multiple-Minimum-Degree algorithm, the Sparspak Automatic Nested

Dissection (AND) algorithm [1], and other variants, on several measures of parallelism by

a wide margin. These results were confirmed by computing the factorization times on a an

eight-processor Cray Y-MP/8.
One disadvantage of the SND ordering algorithm is that it requires a greater running

time relative to the MMD ordering algorithm when the ordering is computed on a serial

computer. However, many improvements have been made to the basic implementation

of the spectral nested dissection algorithm to decrease its running time. An important

improvement is the efficient use of vectorization in the Lanczos iteration to compute the

Laplacian eigenvector. On a set of nine representative problems from the Boeing-Harwell

test set, the improved SND ordering algorithm took about ten times the required by the

MMD algorithm on a Cray C-90. In current work we are developing a "supernodal" SND

ordering algorithm, and expect that this should lead to further decrease in the running

time of the ordering algorithm. Detailed results on these improved implementations of the

SND ordering algorithm will be described elsewhere [8].

In this paper, we compare the arithmetic operations, elimination tree height (this is the

number of steps in a parallel factorization algorithm), and factorization time required by a

panel multifrontal factorization algorithm when various ordering algorithms are employed.

A longer version of this paper containing additional results is currently under preparation

[5].

2 Cholesky factorization on the Intel Paragon

We compare four ordering algorithms in this section: SND1 is a spectral nested dissection

algorithm in which the vertices of the adjacency graph are partitioned with respect to

the median eigenvector component. In SND2, the partition is based on the sign of the

eigenvector component. The former tends to compute a separator that divides the graph

into two roughly equal parts at each step, while the latter tends to compute smaller

separators but may divide the graph less evenly. Liu's MMD ordering algorithm [4] is

currently the most popular ordering algorithm for serial computation. The fourth ordering

algorithm, the MMD+JK algorithm, adapts the MMD ordering for parallel computation

[2]. Here the final ordering is computed in two steps. A primary MMD ordering is used to

compute a chordal filled graph (the adjacency graph of L + L T) with low fill. A secondary

Jess and Kees ordering then reorders the filled graph to minimize the elimination tree height
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TABLE 1

Test Problems.

Problem n IAI
PWT 36,519 399,145

FLAP 51,537 1,113,851

COPTER2 55,476 870,904

BCSSTK29 13,992 647,472

BCSSTK33 8,738 609,380

BCSSTK30 28,924 4,101,340

BCSSTK31 35,588 1,252,592

BCSSTK32 44,609 2,103,919

density (%)

0.03

0.04

0.03

0.33

0.80

0.49

0.10

0.11

Description

Connectivity matrix,

NASA Ames pressurized wind tunnel.

Part of actuator system on

airplane (DAWSON5).

Adapted CFD grid for helicopter

rotor blade, from R. Strawn, NASA Ames.

Stiffness matrix for building model
of the 767 rear bulkhead.

Stiffness matrix of pin boss (auto

steering component) solid elements.
Stiffness matrix for off-shore

generator platform (MSC NASTRAN).
Stiffness matrix for automobile

component (MSC NASTRAN).
Stiffness matrix for automobile

chassis (MSC NASTRAN).

of the filled graph over all orderings that do not increase the fill. (This is the set of perfect

elimination orderings of the chordal graph.) A composition of the two orderings is then used

to factor the given matrix M. We have used a fast implementation of the Jess and Kees

algorithm from [3] in combination with the best MMD ordering obtained from twenty runs

of the MMD algorithm with randomly chosen initial orderings. This was done to decrease

the elimination tree height of the MMD+JK ordering as much as possible. We excluded

the Automated nested dissection (AND) algorithm from Sparspak from these experiments

since it led uniformly to the slowest factorization times.

We have included three large problems obtained from NASA Ames Research Center

and five of the largest structural analysis problems from the Boeing-Harwell collection in

our test set (Table 1). The table shows that the latter problems are significantly denser

than the former problems.
Table 2 compares the numbers of floating point operations (FLOPS) needed to compute

the Cholesky factor L. The SND2 ordering leads to smaller separators than SND1 for most

problems, and this is reflected in lower FLOPS as well. On five of the eight problems, the

spectral orderings lead to lower FLOPS than the two minimum-degree orderings, though
MMD incurs less than half the FLOPS of SND2 on the BCSSTK32 problem. In Table 3

we will see that there is a trade-off between low fill and low elimination tree heights for the

denser structural analysis problems. Further, the arithmetic costs of the spectral algorithms

are much less than the costs of the Automated Nested Dissection (AND) algorithm from

Sparspak.

Table 3 compares elimination tree heights. The two spectral nested dissection orderings

SND1 and SND2 produce much shorter elimination trees than both MMD and MMD+JK.

For five out of the eight test problems, SND1 computes the shortest elimination tree, and
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TABLE 2

Comparison o/floating-point Operat_on, ( Msll_ons).

Problem SND1 SND2

PWT 125 119

FLAP 818 773

COPTER2 8,715 7,505

BCSSTK29 626 512

BCSSTK33 781 882

BCSSTK30 1,865 1,600

BCSSTK31 2,623 1,919

BCSSTK32 4,097 2,526

MMD MMD+JK

161 176

1,160 1,585

11,378 12,472

393 395

1,204 1,137
928 823

2,551 1,992

1,109 1,018

TABLE 3

Comparison of El_rnmatson Tree Heights.

Problem SND1 SND2 MMD MMD+JK

PWT 555 571 1,216 891

FLAP 1,070 1,118 1,841 1,783

COPTER2 2,597 2,477 5,863 4,058

BCSSTK29 946 923 1,758 1,197

BCSSTK33 1,254 1,344 2,414 1,740

BCSSTK30 1,392 1,649 3,644 2,748

BCSSTK31 1,723 1,750 2,362 1,970

BCSSTK32 2,023 2,014 3,173 2,381

SND does so for the remaining three. The MMD ordering leads to the longest elimination

trees, which are twice as high (on the average) as the elimination trees of SND1. For all of

the problems except FLAP, MMD+JK cuts down the elimination tree heights of MMD by

almost 25%.

Table 4 reports the fa_torization times on an Intel Paragon with 64 processors. The

spectral nested orderings SND1 and SND2 result in faster fa_:torizations than MMD and

MMD+JK, for all problems except for BCSSTK32. The MMD+JK ordering reduces the

fa_torization time required by MMD by decreasing the critical path length (i.e., the longest

path from a leaf to the root in the elimination tree) in the computation. On COPTER2,

the largest problem in terms of serial arithmetic cost in this set, factorization with the

SND2 ordering is more than twice as fast as with MMD. We attain about 950 Megaflops

on this problem with the spectral ordering.
The factorization times show that although the spectral nested dissection orderings

have worse FLOPs for the structural problems, which means they incur greater fill, they

result in shorter and more balanced elimination trees, and lead to more efficient parallel

fa_torization.

Consider the problem BCSSTK32 for which the SND1 ordering leads to the slowest

factorization. The FLOPs SND1 requires is almost four times as many FLOPs as MMD and

twice as many as SND2. Note that this is one of the denser structural analysis problems from
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TABLE 4

Factorization Time(Seconds) on a 64-processor Paragon.

Problem SND1 SND2 MMD MMD+JK

PWT 0.46 0.42 0.75 0.67

FLAP 1.48 1.48 2.31 2.86

COPTER2 9.20 8.29 17.52 13.60

BCSSTK29 1.16 1.15 1.76 1.23

BCSSTK33 1.81 2.38 3.52 2.96

BCSSTK30 2.53 2.60 3.96 2.79

BCSSTK31 3.55 2.84 4.29 3.68

BCSSTK32 6.30 4.06 3.36 2.45

the Boeing-Harwell collection. An examination of the degree distribution of BCSSTK32

shows that most of its vertices have high degree. We suspect that this problem may not

have good sepaxators. The results show that the MMD+JK ordering may be a good parallel

ordering for problems without good separators. However, for finite element meshes with

good separators, the SND orderings are clearly the methods of choice among the orderings

examined here.
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